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GENERAL MODEL OF SOMIGLIANI DISLOCATIONS 

Sh. Kh. Khannanov UDC 548.571 

i. Underlying the statistical description of plastic molding, substructure evolution, 
fracture,and other processes in real solids is the continual theory of defects (see [1-3], 
e.g.,). Among all the possible defects, dislocations and disclinations whose distributions 
can represent practically any substructures, occupy an important place. The examination of 
dislocations and disclinations as different defects is not always convenient and justified 
since they are Volterra dislocations (only of just a different kind). On the other hand, 
defects of the most general kind, Somigliani dislocations [2], can be the means for a single 
description of dislocations and disclinations. A step is made in this direction in [4] and 
a model is oroDosed for Somigliani dislocations, given by their basic plastic distortion 
fields 8~ and displacement velocities v~. However, such Somigliani dislocations describes only 
the soica~led dislocation model of defegts [3] This is completely adequate for a calcula- 
tion of the dynamical elastic stress fields produced by defects, but certain disclination 
characteristics of the defect structure are not reflected here. The purpose of this paper 
is to obtain a general model of Somigliani defects which will equally take into account both 
the dislocation and the disclination characteristics of defects. As will be shown below, 
such a model should be a generalization of disclination (a rotational Volterra dislocation). 

2. The usual (initial) definition of a Somigliani dislocation is formulated in terms of 
the total displacement fields u~, which undergo arbitrarily changing jumps [u~] along S on the 
defect surface S [2]. In constructing ~ the general model of a Somigliani disl6cation, ~ we pro- 
ceed differently, namely, we give the definition of the model in terms of the basis plastic 
fields, as is done in [4]. 

We shall consider the general model of the Somigliani dislocation as a direct generaliza- 
tion of a disclination which is defined in the continual theory of defects by giving four 
basis plastic fields: ~ is the strain tensor, zP is the bending--twisting tensor, v~ is the 
displacement velocity tensor, and w~ is the rotation velocity tensor [5, 6]. The expressions 
for the basis fields are obtained for an ordinary disclination by considering disclinations 
with a closed surface S(t) encloding a volume V~t) where t is the time. The Starting point 
is the expression for the total displacements ui(r, t) within the volume V(t) [5] 

t 0 : + dv', ( 2 .  l )  
v 

w h e r e  R = r - -  r '  i s  t h e  d i f f e r e n o e  b e t w e e n  t h e  r a d i u s - v e c t o r s  o f  t h e  o b s e r v a t i o n  and  i n t e g r a -  
t i o n  p o i n t s ,  $ ( r )  i s  t h e  t h r e e - d i m e n s i o n a l  D i r a c  d e l t a  f u n c t i o n ,  b ; ,  2q a r e  t h e  r e l a t i v e  
translation and rotation vectors of the edges of the slit S(t), ~qr is the unit antisymmetric- 
tensor, x r are the Cartesian coordinates of the radius-vector r, and x~ are coordinates of a 
point through which the axis of rotation passes. The basis fields are found by the following 
scheme [5, 6]. 

Ufa. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 
148-152, May-June, 1985. Original article submitted March 26, 1984. 
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The total distortion B~ is calculated by differentiation with respect to the coordi- 
nates 

~z : , ( 2 . 2 )  

where the subscript after the comma denotes the differentiation with respect to the appro- 
priate Cartesian coordinate. The symmetric part of ~ll in (2.2) is the total strain 

e~' l T = ~(hz), ( 2 . 3 )  

where (k~) is the symmetrization operation in the subscripts indicated. The basis plastic 
field e~ is defined as the singular part of e~7 in (2.3) concentrated on S(t). 

Differentiating (2.1) with respect to the time t yields the velocity vector of the total 
displacement v T 

,T _ a z~. (2.4) 

The basis field of the plastic displacement v~ is again defined as the singular part of v~ 
in (2.4) concentrated on S(t). 

The total rotation vector_~T is found as the vector associated with the antisymmetric 
part of the total distortion B~qin (2.2): 

T i T % = 7 ekzq~l~l' ( 2 . 5 )  

By differentiating ~ in (2.5) with respect to the coordinates, the total bending--twist- 
evaluated ing tensor • is q 

T T • = ~q,m" ( 2 . 6 )  

The singular part of • concentrated on S(t) corresponds to the plastic bending--twisting ten- 
sor ~q. 

Finally by differentiating T in (2.5) with respect to time, the total rotation velocity , 9q 
is found 

~T 
~T = ~ ~, (2.7) 

and the singular part of w~ concentration on S(t) is taken as the basis vector of the plastic 
rotation velocity w~. 

The procedure described above for the calculation of the basis fields (2.2)-(2.7) can be 
represented in a simpler form if the apparatus of motor calculus is used (six-dimensional 

T •  v space with covariant differentiation) [7]. The total basis fields ekl, mq, ~, wT comprise 
are obtained a pair of motors (the motors are mapped by a column-matrices in writing), which q 

by differentiating the motor from the vectors~ ~, u~ (we omit the subscripts on the tensors) 

(0 <) e T =grad  " 
ur  ' ( 2 . 8 )  

Here grad is an operation of the form [7] 

grad T = u T T ' 
\ut~] ~ ~,~-- s~h~9 ~ 

while ~/~t denotes 

We f o l l o w  t h e  a b o v e - m e n t i o n e d  p r o c e d u r e  i n  d e r i v i n g  t h e  e x p r e s s i o n s  f o r  t h e  b a s i s  f i e l d s  
i n  t h e  g e n e r a l  mode l  o f  S o m i g l i a n i  d i s l o c a t i o n s ,  b u t  we g e t  r i d  o f  t h e  a s s u m p t i o n  a b o u t  c o n -  
s t a n c y  of the vectors bl, ~q by considering them functions of the coordinates and time. This 
is a completely natural extension of an ordinary disclination. Since b~, ~_ are arbitrary 
functions, eVen the expression in the braces under the integral sign in (2.~) will be an arbi- 
trary vector field Pi(r, t) so that we can write in place of (2.1) 
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~T = .I 6 (a)i, (r', t') dv'. (2. lO) 
v(O 

Starting from (2.10) and executing the necessary calculations, we obtain expressions for the 
basic plastic fields in the general model of the Somigliani dislocation: 

e~t = -- .I ~ (R) Pz (r', t ~) dS~(m); ( 2. II) 
s(t) 

P f J ~'~q = - -  T ehtq ~ ~ (R) Pl (r', t') d S '  k - -  t e ' . ' T hlq O(R)Pt ,k(r ' ,V)dSm; (2 12) 
s(o sIt) 

vF = ,[ ~ (R)PL (r', t') v~. (r', t') dS'h; (2 .13)  
s(t) 

p = _ t 6 (n) ~ (r', t') ds~ + T ~h~q ( 2 . 1 4 )  wq .-~ ehl q 6,~ (R) PtujdS i - -  --~ klqghmp 6 (l:{) PlVmdLp, 

s(t) s(t) L(O 

where ~k is the velocity of motion of the surface S(t), the upper dot denotes differentiation 
with respect to the time, dLp is an element of the contour L bounding S(t). It can be seen 
that in the case when the general expression (2.10) goes over into the particular expression 
(2.1), the formulas (2.11)-(2.14) yield the correct formulas for the basis plastic fields of 
of an ordinary disclination [5]. 

3. As is seen from (2.8) and (2.9), the total basis fields are kinematically dependent 
and subject to compatibility conditions (integrability of the system of equations (2.8) and 
(2.9)) 

rot =0; (3.1)  
e T 

grad = o~ vT ' (3.2) 

where rot(curl) is an operation of the form [7] 

) 
The plastic basis fields e~, u Pmq, v~1), wp are not subject to the compatibility conditions 
(3.1) and (3.2) in the general case. The density ap~7, ~=~ and flux JkT, Sk~ tensorJ of the 
continuously distributed dislocations and disclinations corresponding to the dislocation- 
disclination models of the total Somigliani dislocations can be defined as a measure of the 
deviation from the compatibility conditions (3.1) and (3.2) for the basis plastic fields: 

(0 

Because of the d e f i n i n g  r e l a t i o n s h i p s  (3 .3)  and ( 3 . 4 ) ,  the d e n s i t y  ~p~, 0pq and f l ux  J k ; ,  Skq 
t e n s o r s  of the  d i s l o c a t i o n s  and d i s c l i n a t i o n s  here  s a t i s f y  the c o m p a t i b i l i t y  c o n d i t i o n s  

d i v ( O )  = O ; a  (3.5 

where div is an operation of the form [7] 

O, 
(3.6 
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(Omh I (Ontk,m div = ). 
\(Zmh / \O~mh,m "~-Shm~Om~ 

Substituting the expressions (2.11)-(2.14) obtained above for the basis plastic fields into 
(3.3) and (3.4), we find for the dislocation and disclination densities and fluxes in the gen- 
eral model of Somigliani dislocations: 

O:pl 6 (R) PldLp 2c 8pro h (5 (R) Pl,mdSh 2c 8pm~ 
L S S 

p p _ _  t g - pq --~ 

L s 
(3.s) 

L S S (3.9) 

h q = ~  8~mhenlq ~(R) Pl,nVmdL p -  ~ ent q 6( )PI,ndS~ --'~8nlq 
k s s (3.10) 

It is easy to see that in the case when the general expression (2.10) goes over into the par- 
ticular expression (2.1), formulas (3.7)-(3.10) yield the correct formulas for the usual dis- 

clination [5]. 

4. The field equations to determine the elastic fields emq, ~ vT,Wq whose sources 
are defects distributed in the body take the following form with ), (3.2) and (3.3), 

(3.4) taken into account 

Equations (4.1), 
(we assume the bulk forces zero) 

oij , j  = pvj 

and Hooke' s law 

{Yij ~ c ~ ] ~ e h t '  

(4.2) must be supplemented by a dynamic equation of the theory of elasticity 

(4.3) 

(4.4) 

where D is the mass density and Cijk7 are elastic constants. 

bility conditions 

emn(r, t) [6] 

emn (r, t) = y { [ s p m h c i j k l G j n , i  (R, T) ap/(r', t') --PGln (R, T) Jml (r', t')] -- (4 .5 )  

%,~k [eq, z c~h~ H~,,~, (R, r) Ovq (r', t') - phh~,, (R, T) S,p (r', t')]}(~,,) dr'~t', 

where Gin(r, t) is the dynamical Green's function and the potential function Hjn(r, t) is 

determined by the relationship 

(4~F)-IGjn (r', t) dr' 

(T = t -- t'). Hence, the elastic stresses oij produced by the defects distributed in the body 
are found by substituting (4.5) into (4.4). The set of equations (4.1)-(4.4) therefore deter- 
mines the dynamic state of an elastic medium for given defect characteristics. 

If general Somigliani dislocations are distributed continuously in a medium, then the 
distribution function f(r, t; q) can be introduced to describe them, where q is the set of 
generalized coordinates governing the type of Somigliani dislocation. For instance, in the 
case of ordinary closed dislocation loops of circular shape q = {r, n, b}, where r is the 
loop radius, n is the vector normal to S and b is the Burgers dislocation vector. The mean 
densities ~pT,[pq and fluxes JkZ, Skq of dislocations and disclinations over a physically 

Upon conservation of the compati- 

(3.5) and (3.6), integration of (4.1)-(4.4)yields for the elastic strains 
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small volume of a medium are here found by integration of the tensors ~p%(q), @pq(q), 
JkT(q), Skq(q) corresponding to an isolated general Somigliani dislocation of the type q, 
with respect to the generalized coordinates q. For example, we will have for ~p% 

~pz- f ~pz(q)/(r, tlq)dq. 
Here the distribution function f(r, t; q) is normalized so that the number of general Somig- 
liani dislocations dN with generalized coordinates between q and q + dq per unit volume dN = 
f(r, t; q)dq. Evolution of the ensemble of defects in time can be described by using a bal- 
ance equation for the distribution function f(r, t; q) of the form 

~//Ot + div(Q[): /(f,/'), (4.6) 

where div is the diverzence operation in (q + 3)-space, Q is the velocity vector in the 
same space Q= {~, ~}; l(f, f') is the collision integral that takes account of the jumplike pro- 
cesses of the change in state of the defects (generation, combination, etc.). The dynamical 
law 

Q (4.7) 

must be given to close (4.6), where ~ are the effective stresses comprised of external and 
internal (produced by the defects themselves) stresses. The form of the law (4,7) is deter- 
mined from the solution of the problem of motion of a single defect in a field of stresses 
o~j (see details in [4]). 

Therefore, a general model is proposed for the Somigliani dislocation that is a defect 
of more general type than the ordinary dislocation and disclination. The general Somigliani 
dislocation is defined by giving the basic plastic fields according to (2.11)-(2.14); more- 
over, the dislocation-disclination model (representation) with continuously distributed dis- 
locations and disclinations (3.7)~3.11) corresponds to it. Evolution of the ensemble of 
Somizliani dislocations in time can be described by a distribution function subject to a 
balance equation of the form (4.6). 
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